Querying MongoDB Atlas Data as a Graph
Summary
In this tutorial, you will:
- Create a MongoDB Atlas database and load it with example data;
- Start a PuppyGraph Docker container and query the MongoDB Atlas data as a graph.
Prerequisites
- Please ensure that
docker
is available; - You need an account of MongoDB Atlas and one MongoDB cluster in that account;
- Accessing the PuppyGraph Web UI requires a browser;
Deployment
Run the following command to start PuppyGraph:
docker run -p 8081:8081 -p 8182:8182 -p 7687:7687 -d --name puppy --rm --pull=always puppygraph/puppygraph:stable
Data Preparation
This tutorial is designed to be comprehensive and standalone, so it includes steps to populate data in MongoDB. In practical scenarios, PuppyGraph can query data directly from existing tables in your MongoDB.
Connect to the database in MongoDB by tools like MongoDB Compass. We will use MongoDB shell to populate data in this tutorial.
Create the demo graph. We strongly recommend user to specify JSON schema validation to avoid errors.
db.createCollection("person", {
validator: {
$jsonSchema: {
bsonType: "object",
required: [ "id", "name", "age" ],
properties: {
id: { bsonType: "string" },
name: { bsonType: "string" },
age: { bsonType: "int"}
}
}
}
})
db.person.insertMany([
{id: 'v1', name: 'marko', age: 29},
{id: 'v2', name: 'vadas', age: 27},
{id: 'v4', name: 'josh', age: 32},
{id: 'v6', name: 'peter', age: 35}
])
db.createCollection("software", {
validator: {
$jsonSchema: {
bsonType: "object",
required: [ "id", "name", "lang" ],
properties: {
id: { bsonType: "string" },
name: { bsonType: "string" },
lang: { bsonType: "string" }
}
}
}
})
db.software.insertMany([
{id: 'v3', name: 'lop', lang: 'java'},
{id: 'v5', name: 'ripple', lang: 'java'}
])
db.createCollection("created", {
validator: {
$jsonSchema: {
bsonType: "object",
required: [ "id", "from_id", "to_id", "weight" ],
properties: {
id: { bsonType: "string" },
from_id: { bsonType: "string" },
to_id: { bsonType: "string" },
weight: { bsonType: "double" }
}
}
}
})
db.created.insertMany([
{id: 'e9', from_id: 'v1', to_id: 'v3', weight: 0.4},
{id: 'e10', from_id: 'v4', to_id: 'v5', weight: Double(1.1)},
{id: 'e11', from_id: 'v4', to_id: 'v3', weight: 0.4},
{id: 'e12', from_id: 'v6', to_id: 'v3', weight: 0.2}
])
db.createCollection("knows", {
validator: {
$jsonSchema: {
bsonType: "object",
required: [ "id", "from_id", "to_id", "weight" ],
properties: {
id: { bsonType: "string" },
from_id: { bsonType: "string" },
to_id: { bsonType: "string" },
weight: { bsonType: "double" }
}
}
}
})
db.knows.insertMany([
{id: 'e7', from_id: 'v1', to_id: 'v2', weight: 0.5},
{id: 'e8', from_id: 'v1', to_id: 'v4', weight: Double(1.1)}
])
The above SQL creates the following tables under the modern
schema:
id | name | age |
---|---|---|
v1 | marko | 29 |
v2 | vadas | 27 |
v4 | josh | 32 |
v6 | peter | 35 |
id | name | lang |
---|---|---|
v3 | lop | java |
v5 | ripple | java |
id | from_id | to_id | weight |
---|---|---|---|
e7 | v1 | v2 | 0.5 |
e8 | v1 | v4 | 1.1 |
id | from_id | to_id | weight |
---|---|---|---|
e9 | v1 | v3 | 0.4 |
e10 | v4 | v5 | 1.1 |
e11 | v4 | v3 | 0.4 |
e12 | v6 | v3 | 0.2 |
Create Atlas SQL Connection and get JDBC url
PuppyGraph use JDBC driver to connect to MongoDB Atlas. So we need to create Atlas SQL connections instance in MongoDB Atlas website and get JDBC url.
Modeling a Graph
We then define a graph on top of the data tables we just created. Actually, this is the "Modern" graph defined by Apache Tinkerpop.
A schema instructs PuppyGraph on mapping data from the Hive into a graph. PuppyGraph offers various methods for schema creation. For this tutorial, we've already prepared a schema to help save time.
Create a PuppyGraph schema file schema.json
with the following content:
schema.json
{
"catalogs": [
{
"name": "mongodb_data",
"type": "mongodb",
"jdbc": {
"username": "[username]",
"password": "[password]",
"jdbcUri": "[jdbcUri]",
"driverClass": "com.mongodb.jdbc.MongoDriver"
}
}
],
"graph": {
"vertices": [
{
"label": "person",
"oneToOne": {
"tableSource": {
"catalog": "mongodb_data",
"schema": "modern",
"table": "person"
},
"id": {
"fields": [
{
"type": "String",
"field": "id",
"alias": "id"
}
]
},
"attributes": [
{
"type": "Long",
"field": "age",
"alias": "age"
},
{
"type": "String",
"field": "name",
"alias": "name"
}
]
}
},
{
"label": "software",
"oneToOne": {
"tableSource": {
"catalog": "mongodb_data",
"schema": "modern",
"table": "software"
},
"id": {
"fields": [
{
"type": "String",
"field": "id",
"alias": "id"
}
]
},
"attributes": [
{
"type": "String",
"field": "lang",
"alias": "lang"
},
{
"type": "String",
"field": "name",
"alias": "name"
}
]
}
}
],
"edges": [
{
"label": "knows",
"fromVertex": "person",
"toVertex": "person",
"tableSource": {
"catalog": "mongodb_data",
"schema": "modern",
"table": "knows"
},
"id": {
"fields": [
{
"type": "String",
"field": "id",
"alias": "id"
}
]
},
"fromId": {
"fields": [
{
"type": "String",
"field": "from_id",
"alias": "from_id"
}
]
},
"toId": {
"fields": [
{
"type": "String",
"field": "to_id",
"alias": "to_id"
}
]
},
"attributes": [
{
"type": "Double",
"field": "weight",
"alias": "weight"
}
]
},
{
"label": "created",
"fromVertex": "person",
"toVertex": "software",
"tableSource": {
"catalog": "mongodb_data",
"schema": "modern",
"table": "created"
},
"id": {
"fields": [
{
"type": "String",
"field": "id",
"alias": "id"
}
]
},
"fromId": {
"fields": [
{
"type": "String",
"field": "from_id",
"alias": "from_id"
}
]
},
"toId": {
"fields": [
{
"type": "String",
"field": "to_id",
"alias": "to_id"
}
]
},
"attributes": [
{
"type": "Double",
"field": "weight",
"alias": "weight"
}
]
}
]
}
}
Please replace username
,password
,jdbcUri
parameters with your account user name, password and jdbc Url.
Log into PuppyGraph Web UI at http://localhost:8081 with username puppygraph
and password puppygraph123
.
Upload the schema by selecting the file schema.json
in the Upload Graph Schema JSON
block and clicking on Upload
.
Once the schema is uploaded, the schema page shows the visualized graph schema as follows.
Alternative: Schema Uploading via CLI
Alternatively, run the following command to upload the schema file:
curl -XPOST -H "content-type: application/json" --data-binary @./schema.json --user "puppygraph:puppygraph123" localhost:8081/schema
The response shows that graph schema has been uploaded successfully:
Querying the Graph
In this tutorial we will use the Gremlin query language to query the Graph. Gremlin is a graph query language developed by Apache TinkerPop. Prior knowledge of Gremlin is not necessary to follow the tutorial. To learn more about it, visit https://tinkerpop.apache.org/gremlin.html.
Click on the Query
panel the left side. The Gremlin Query tab offers an interactive environment for querying the graph using Gremlin.
Queries are entered on the left side, and the right side displays the graph visualization.
The first query retrieves the property of the person named "marko".
Copy the following query, paste it in the query input, and click on the run button.
The output is plain text like the following:
Now let's also leverage the visualization. The next query gets all the software created by people known to "marko".
Copy the following query, paste it in the query input, and click on the run button.
The output is as follows. There are two paths in the result as "marko" knows "josh" who created "lop" and "ripple".
Alternative: Querying the graph via CLI
Alternatively, we can query the graph via CLI.
Execute the following command to access the PuppyGraph Gremlin CLI
The welcome screen appears as follows:
____ ____ _
| _ \ _ _ _ __ _ __ _ _ / ___| _ __ __ _ _ __ | |__
| |_) | | | | | | '_ \ | '_ \ | | | | | | _ | '__| / _` | | '_ \ | '_ \
| __/ | |_| | | |_) | | |_) | | |_| | | |_| | | | | (_| | | |_) | | | | |
|_| \__,_| | .__/ | .__/ \__, | \____| |_| \__,_| | .__/ |_| |_|
|_| |_| |___/ |_|
Welcome to PuppyGraph!
version: 0.10
puppy-gremlin>
Run the following queries in the console to query the Graph.
Properties of the person named "marko":
To exit PuppyGraph Gremlin Console, enter the command:
Cleaning up
Run the following command to shut down and remove the containers: